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CONSTRUCTION OF DISCONTINUOUS SOLUTIONS IN
THREE-DIMENSIONAL ELASTICITY THEOQRY*

G.A. MORAR and G.YA. POPOV

Discontinuous solutions of the equations of elasticity in an elastic
space were constructed in /1/ by the generalized integral transform
method. Here we adopt a different approach. We first construct a
solution for a concentrated jump of displacements and stresses, which is
used as Green's function (the influence function), and then construct a
solution of the equations of elasticity theory for given displacement
and stress jumps distributed over the surface of the defect. In other
words, the discontinuous solutions are generated by appropriate
integration of the influence functions. The discontinuous solutions are
applied to the problem of stress behaviour in the neighbourhood of the
vertex of a thin rigid wedge inclusion. Alternative approaches to the
construction of discontinuous solutions in the theory of plates and
shells are proposed in /2-4/.

1. Discontinuous solutions in Cartesian coordinates. Consider an elastic space with a
defect in the plane z = 0. This defect is represented by a region £ such that the stress
and displacement fields experience a discontinuity across this region. We introduce the
following notation for jumps:

{uxy (‘E, y) = Uy (-T, Y, _0) — Ux (Iv Y, —f—O), L (1-1)
o> (z, y) = 0, (z, y, ~0) — 0, (z, y, +0)

We assume that the displacement u, has a concentrated jump at z =0 of the form
{ugy = [uel 8 (2) 8 (y) 1.2)

where [u,] is the magnitude of the jump and & (z) is the delta function.
The equations of equilibrium in displacements in the presence of mass forces have the

form 75/ HLI{TY = p= (V) (1.3)

where {U} = |l u.u. |7 is the displacement vector, {V} = ||XYZ|T is the vector of volume
forces, p is the shear modulus and || L]l is the 3x3 matrix of differential operators with the
components
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Here % =Y,(1 —2¥)/(1 —- %) and v is Poisson's ratio.

To solve system (1.3) without mass forces in the presence of a jump (1.2), we apply the
integral Fourier transform with respect to 2z by the generalized scheme of /1/ with the par-~
ameter A. Partitioning the integration interval into subintervals (—oo, —0) and (+0, oc),
integrating by parts, and conserving the jumps of all functions at z = 0, we obtain
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The symbol A 1is the Fourier transform parameter of the corresponding function, e.g.,

Upp = S u,(x,y,z)edz

—o0

We write Hooke's law for the stresses 0 T., T;; in the form

ol:—“-[aaz +( 1—27()( i"i)] (1.5).

%

[ Bu du, 0uv . Ou,
szZ“(T;*‘ﬁ)’ =gt

We stipulate that on crossing the plane z = ( only the displacement u, experiences a
jump of the form (1.2), while the displacements uy, u. and the stresses 0. T, and T, are
continuous, i.e.,

uy) = uzp =0, €00 = 1> = P = 0 (1.0}

Now rewriting (1.5) in jumps and using (1.6), we obtain

(Ge>={F>=0

Then the right-hand sides of Egs.(l1.4) take the form
fo. = M ul 8 @) 8 (y), fn = 0, far = —[ual &' (2) 6 () (1.7
If the mass forces in (1.3) are taken in the form
X=—pluld@s@bt (2,Y =0,2=—pluld (z)8 () 6 (2

and are Fourier-transformed with respect to 2, we obtain (1.7). Therefore, the jump (1.2)
can be obtained if two directed concentrated moments /6/ of intensity M,, = M,, = —u [u,) are
applied at the origin.

We can similarly treat concentrated jumps of the displacements u, and u, along 2 for

du,
9z

— (1 —2%)[u,] 6" (x) 6 (y)

z2=0. For instance, the jump <u,> = lu,] 6 () 8(y) can be obtained if we take two con-
centrated moments of intensity My, = M., = —plu,l. Finally, to obtain the jump {u,y = lu,]
8 (zx) 8 () , we should use three dipoles of intensity D, =D, = —pux™ (1 — 2%) [u,], D, = —px7' [u.l.

Now solving system (1.4) or using the available solutions (from /6/, say), we obtain expressions
for the displacements. For brevity we will use matrix notation. We introduce the jump vector

{Su} = |l [u,] [uy] fu.] “T
The dependence of the displacement vector on the jump vector is written in the form
{U) =116l (S} (1.8)

where |G} is a 3x3 functional matrix with elements g; = g;; (z, y, 2):

g1 = —28x"y G2 = gu = —3 ()7 (1 — %) zyzr™ (1.9)
813 = T8, Ew = —38y .\ Bau = Y&:
gn = —28:", 83 = —Y&', 81y = —28°

(guf =)y r 3 31 —w)ur™®, u==2y, z; r=(22+3* +
22)s)

The stresses T,, T, and o0, may also experience jumps across the plane 2z = (0. We can
similarly derive the following result. If the stresses T, have a concentrated jump <{T,,> =
[t.x] 8 () 6 (¥) at z =0, then the solution is identical to Kelvin's solution, with a
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concentrated force X — [1..] applied at the origin. To obtain a solution for the concentrated
jump (1) =1[1,16(2) 6 (¥y) , we need to apply a concentrated force Y =lt,y] at the origin.
Finally, if <oy = lo,] 8 (z) 6 (y), we need to take Z =[o,]. A dependence similar to (1.8) has

the form
{U} =TI} {So}, {Sa} =l [zl [t] a1 1T (1.10)

Using Kelvin's solution /5, 6/, we obtain the elements of the matrix {{T]|
Vi = Voo Viz = Y = Bapy 2yr, yi3 = Y = Bap)™ (1 —x) zar’® (1.11)

Yoz = Vy» Yoz = Yoz = & YV1a Vas = V=
(o = Bup)y I +%) - (1 —x) ur?, u =gz, y, 2)

Applying Hooke's law and relationships (1.8) and (1.10), we can find the stresses as a
function of the displacement and stress jump vectors:

{o) =1 T {Su}, {0} =1 Q1 {Se} (1.12)
where {6} = | 0:040:TyTy:T:x |IT. The elements of the matrices ||T|] and || @] have the form
ty; = —3 2n)1 (1 — %) przr® (1 — 52%7%) (1.13)

t, = —3 () pazr S [(1 + %) — 5 (1 — %) y¥r™?]
ty = tgg = —3 )1 (1 — o) pazr™® (1 — 52472
By = —3 (4m)™ pyzrs [(1 — 2x) — 10 (1 — %) 2*r7%

tey = (4n)pr s (4w — 3) + 3 (1 — 2%) y¥r 2 4
30 (1 — =) 2%2%74]

ty = —3 n) tpyzr s [x — 5 (1 — %) 2472
Sar = b5y = T 'Ylar, ley = In
s = —(2r)"ur® [1 — 3xy?r® — 15 (1 — ) 2%% 4]
tgg = —(2m)™1 (1 — ®) wr™® (1 -+ 62372 — 152%r7%)

qu = —2'\ Gn = T&y, Iy = T&, = —Y&x"
g1 = Qag = Qog = —3 (4} (1 — ) 2yzr™, gq = —zg,"
Q12 = Y8x + 92 = —VY&*s 932 = Y& Qa2 = —28y", qay = —zgy"
Q13 = 282> Qas = 38y » Qas = —26:"s Q53 = —YE:'» Qos = —28&:"

The coefficients ty, 8, 5 and {3 can be obtained respectively from the coefficients
by taps Le1 and t,; by making the substitution (zx2y), and ¢; and {3; can be obtained
from ¢, and I, by the substitution (z 2 z).

If the concentrated displacement and stress jumps are specified at an arbitrary point

(&, n), then in expressions (1.9), (1.11) and (1.13) we need to substitute z —§ for £ and
y—n for y. For example, suppose that the displacement jump u, is given at the point z = §,
y=m. Using (1.8), we may write, for instance, wu, =g, (c—& y— 1, 2) [ul. If the jump [u,l

varies in some region € with density [u,] = (u;) (z, y), then

u = Wen (@ — & ¥y — m, 2w (5, ) dQ

Here and henceforth, integration is over the region .

We can proceed similarly when there is a defect of an arbitrary nature in the plane z = 0
(for instance, a peeling rigid inclusion). 1In general, we observe jumps in the displacements
Uy, Uy, U, and in the stresses T., T,, 0, across the defect. Applying relationships (1.8),
(1.10) and (1.12), we can write a discontinuous solution containing the given jumps (1.1);

(U} =1 K@ || {Su} + Il Ku® [ {80} (1.14)
{a°} =1l K@ || {Su} + 1] Ky |} {Ss}
Here
{UO} = ” u'xo uyo u'zo “Tv {00} = “ GZOTuonzxo ”T (115)
{Su} = || {ux> <uu> {uzy ”T’ {SO} = [} (T <Tzv> {o,) ”T
o o of o Ty g
1ER =68 R e, 1KPI=|r Y 1§

)o@ g
6% ¢ 6 ey e e
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where the functions g;;, v;;, #;; and ¢;; are given by expressions (1.9), (1.11) and (1.13).

2. Discontinuous solutions in cylindrical coordinates. In some three-dimensional problems
with stress concentration near defects, we need to obtain discontinuous solutions in cylindri-
cal coordinates. The results of Sect.l may be extended to the case when the displacements
and stresses experience jumps near the axes of the cylindrical system of coordinates. Consider
jumps along the z' axis of the local coordinate system (z', y’, z/) shown in Fig.l. Using the
results of Sect.l, we can write

{U=11G"l1{Su} (2.1)

where {U'} = || uxwyur T is the displacement vector in the coordinates (z',y', 7'):{Su} = || [us] {u, ]
[u1|T is the displacement jump vector. The elements of the matrix || ¢’ || are given by for-
mulas (1.11), where X, y, 2z must be replaced with x', y', z', respectively. Denote the dis-
placements in the cylindrical system of coordinates by u,, up, u, (Fig.l) and the corresponding
jumps concentrated at the point (p, m) by lupl, lun], [u,]. We have the obvious equalities

{ug] = luel, luyl = lum], lu.] = [u.]
or

{Su} = {Su} = | lupl [un] [w.I”

Consider an arbitrary point M (z', ¥', z’). The components of the displacement vector are
Uy’, Uy, U in coordinates (2', y', 7) and Uy, Ug, Uz
in cylindrical coordinates (r, 0, z), The relationship
between the displacement components in the two coordinate

systems has the form /7/
/—} L Wy =W KUY, (U} =y uo e |F (2.2)

] y The elements of the matrix || K|| are the cosines of
z ? gy ; the angles between the corresponding axes:
U
x ‘ by = kyy = cosy, kyy = —ky = —siny, kyy =1
Fig.1 kg =lkgy =Fky=kyy=0,7v=0—n
Substituting (2.2) in (2.1) and using the orthogonality of the matrix|| K|, we obtain
(U} =GN {S}, lIGI = KIIT{G"} 2.3)
Multiplying the matrices in (2.3), we obtain all the elements of the matrix I G)|. Then
expressing z,y, 2 in terms of r, p, 6,1, z by the relations
z'=rcosy—p, ¥y =rsiny, z =z
we obtain (gy = gu (. 0, ¥, 3))
g = (4n)"zR™3 (1 — c08 V) — 2gure— L21 = 2 SiN Ygpu+ (2.4)
8 = _(’)+gzz+7 812 = —2 sin Yg:0_7 gi3 = —O g
gy = —(4n) 1zZR 3 [x cos y + 3 (1 — x) rpR™% sin2 yl
g3 = —7 SN Y8..", gos = PSIN Vg g3z = — 28"

(gut = (4)"' B3 [k =3 (1 — %) R u,v = z,r,p, 0, @7
+

ot =rcosy —p, o =pcosy —r, R= (r2+ p2 — 2rp cos y)"1)

We can similarly consider the stress jumps in the cylindrical coordinate system. The
analogue of (2.3) is

{U} =T {Ss} (2.5)
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where {Sy} = || [vplltwllo.]|]T is the vector of stress jumps along z at the point (p, 1). The
elements of the matrix ||I'|j are given by
Vie = (8R! [(1 + %) cosy — (1 — %) oT0 A2 (2.6)
Yor = — Yoo SID Y, Va = (Bnp) Nl — n) 20’ R

Viz = Yro- SIN Y, Yor = (BapR) U1 + %) cos y — (1 — x) rpR™2 sin® y]

Vae = Brp) (1 — %) 2R3 sin v, y1 = —Bap) (1 — %) z0°R?

Y23 = T 'PVas. Vazs = Vet
(Yot = BapR) (1 + %) = (1 — ) wwR*; 4, v = 2,7, p, o, o)

Applying Hooke's law and expressions (2.3) and (2.5), we can express the stresses in
terms of the displacement and stress jump vectors:

{o} =i TN {Su}, {0} =1 QI{Ss} ({a} = Il 0,060, TreTe,7:. |IT) 2.7

We will write out only those elements of the matrices || T'|| and || Q || which are needed
later:

ty = —3 (20)1(1 — ») pz@™R™ (1 — 522R72), ty, = (07! r sin yiy (2.8)
tys = —(2m)(1 — x) pR* (1 + 622R™2 — 15z°R™)
tyy = —(4n)tpR3sin y [(dn — 3) — 3 (1—2%) ro™R™2 — 30 (1—
%) pz2ot R4
tyy = (4n)1uR3 [(4n — 3) cos y — 3 (1—2x%) 0o*0 R2 + 30 (1—
«) rpz2R™* sin? y]
ts = (07) ' psiny ty, Ly = —o (0¥,
tey = (4) 'uR™ [(4x — 3)cosy + 3 (1 — 2x) roR™2sin%2 y —
30 (1 — %) 220*0 R
gy = (4n)™t pR3sin y [(4n — 3) — 3 (1—2%) po*R2 — 30 (1 —
%) re2o"R™)
1131_= (D+g:;_, dsy = T sin Yy Qa3 = —Zgzz+
Us1 = Zgpe+ SIN Y, ggp = —(4n) 2R3 [ cosy + 3 (1 —
%) roR"2 sin? y]
G5z = —Pg." sin Y, g = () 2R3 [—ncosy + 3 (1 —
%) oto R}
Qs = —Zfra- SIN Y, 3 = 07 g"

The discontinuous solution in cylindrical coordinates may be written in the form (1.14),
where

{UO} = ” uraueouzo “Tv {0_0}, = ” oonzroTzec ”T

{Su} = Il updunpCup 1T, {Se} = Il Tapd<Tamd<aD I

and the integral operatorsin (1.14) act by the rule

G Of = SS g:;fdQ, T.®f = SS Y (2.9)
T:,®f = SS t:;fdQ, Qi Pf = SSQijfdQ

where integration is over the region £ and the functions g, vi lij, ¢;; depend on r, P, Y 2
and are given by (2.4), (2.6) and (2.8).

3. Application to the problem of stress concentration near a defect. The discontinuous
solutions (1.14) enable us to obtain a system of integral equations for the unknown jumps by
using the conditions on the defect. We will demonstrate this technique for the problem of a
rigid thin wedge inclusion peeling from the substrate in the plane z = 0; the wedge occupies
the region |0 |<{a,0<{r<{oo. The stress state of the elastic space is represented as the
sum of the basic stress state induced by an external load and the perturbed stress state
induced by the defect. Thus,

(U} = {U*} + {U°}, {0} = {a*} + {0°} (3.1)

where the asterisk identifies the main state variables.



661

Assume that the lower lip of the inclusion {z = —0) adheres to the elastic space, while
the upper lip (z = +0) has separated. Then we have the following conditions on the defect:

o (r, 0, +0) = v, (r, 8, +0) = 7.0 (r, 8, +0) =0 (3'2)
u, (r, 8, —0) = u," — ro, sin 8 + zo,, ug (r, 8, —0) =
Uy’ — 20, -+ ro, €030, u, (r, 8, —0) = u,” — ra, cos 8 +
rey sin 8

where u,, us', u,’, 0, ®,, 0, are respectively the displacements and the angles of rotation of
the inclusion as a rigid whole.

Applying (3.1) to realize conditions (3.2) on the defect, we obtain a system of integral
equations for the unknown jumps. We must define the kernels of the integral operators in
(3.1) for z= -0, To this end, we use the relationship

limz (2 + 2+ p2 — 2rpcos )™ = 1278 (r — 0) 8 (v)
(z— +0)

and its analogues obtained by differentiation with respect to r, p, V.

The method of /8, 9/ can be used to analyse the behaviour of jumps in the neighbourhood
of a thin rigid wedge inclusion. Without considering the general case, we will analyse in
detail the special case when the stresses 7,, and T.s experience jumps, while the stresses
0. and the displacements are continuous at 2z = 0. This corresponds to the case when the
inclusion is without bending rigidity and adheres to the elastic space at 2z = 40. In this
case, the system of integral equations has the form

Ly (o> + T oond = fiy = 1,2 (3.3)

The operators TI;{® are evaluated from (2.9) for z=10; f; are functions which are not
given here.

To study the behaviour of the jumps <(r,,> and (1> as r-»0, following /8, 9/, we
apply the Mellin integral transform with respect to r to the system {3.3). As a result, we
obtain the systenm

o«

§1ED | (@) an = (R

—

{9} = Nl 91s@2s "y 45 (m) r«S o> 0" dp,  @pu(n) = § Ctmd pdp
L3 ]
(FY = fraofes ITs F1o(8) =8 § fi(r O) o3 dr, i=1,2
]

The elements of the matrix || K°l| have the form

ki’ (7) = —s*{Is (1 — %) ~ (4 + w)] 2P, (2) + (1 — 1)1 + 8)Pys (2)}
ki 0y = s* s (1 — ) — (1 + ) sin yP, (), Ky’ (¥) = s*[2 +
s (1 = %) sin P, (2}
Eoe® (v) = s* {ll1 + 50 + (1 — )1 + 2P (@) + (1 — (1 +
s} Psy (2)}

(s* = a/sin ms, x = — cos ¥y)

Here P, {zx) 1is the adjoint Legendre function on the cut /10/.

Using the relationship between Legendre functions and the hypergeometric function, we
can show by analytical continuation of the hypergeometric function /10/ that: k;,° (y) and k,° (%)
are continuous functions and

En® (p) = —4In(ly |/ a)+ kn* (), k' ()= —2(1+
Yo In (ly |/ @) + Ey* (v)

where k,,* (v) and k,* (y) are continuous functions.

We will construct the solution of the system by the method of orthogonal polynomials /1/.
To this end, we reduce the system to the iterval (—1,1) and represent the functions g, (a8)
(i =1,2) in the form



Py, (@) = (1 — 037 ,.,Zl X T o (0), @ug(@B) = (1 — 0% A YT o (8)

The continuous functions /A%, k,°, k,°. ky,* are approximated by segments of Fourier series
in Chebyshev polynomials of the first kind,

£

N
B @) = 2 X aiPTia®) T, A p=1,2

=

-

(AR)

The ceofficients ajj are evaluated from standard formulas /11/, for instance
4 N N
n __ '\ .
iy " == m ,\»J >_J kyy* [oe (hp —Ag)] Tioa (h,) Tios (Rg)

p=1 g=1

(A, = cos [y, 2n — )/ N

The orthogonal polynomial method /1/ produces the following coupled system of algebraic
equations for the coefficients X,, Y.

=

v 1Y
1 «
gl‘n-ln_lxn + 2 Ema(ﬂlgxm + E ema(n:zym = fln (34)
m=1 m=l

N N

El ema(nz;zxm + 4 (1 + M) n‘lp‘n—lyn + 21 8ma’('lzl?'zYm = fZ'n

==1 M=

n=1,2,..;p=IIn2,u=nin= 1,2,.. .8 =2, emn =1,
m=2,3,...)

Following /9/, we equate to zero the determinant of system (3.4) and obtain an equation
for the exponent s. Below we give the values of § for v = 0.3 and various a:

an~1-10° 125 250 375 500 625 750 875
5-10° 180 255 355 500 588 725 912

To obtain s to three decimal places for a <{0.625n , it suffices to take N =6 in
system (3.4). As a increases, the convergence becomes poorer and for a = (.875 n we must
take N =90.

Thus, the jumps <(T,> and <1, behave as O (r*!) as r— 0. The stresses T, and 7Ty
have the same feature.
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