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CONSTRUCTION OF DISCONTINUOUS SOLUTIONS IN 

THREE-DIMENSIONAL ELASTICITY THEORY* 

G.A. MQRAR and G.YA. POPOV 

Discontinuous solutions of the equations of elasticity in an elastic 
space were constructed in /l/ by the generalized integral transform 
method. Here we adopt a different approach. We first construct a 
solution for a concentrated jump of displacements and stresses, which is 
used as Green's function (the influence function), and then construct a 
solution of the equations of elasticity theory for given displacement 
and stress jumps distributed over the surface of the defect. In other 
words, the discontinuous solutions are generated by appropriate 
integration of the influence functions. The discontinuous solutions are 
applied to the problem of stress behaviour in the neighbourhood of the 
vertex of a thin rigid wedge inclusion. Alternative approaches to the 
construction of discontinuous solutions in the theory of plates and 
shells are proposed in /2-4/. 

1. Discontinuous solutions in Cartesian coordinates. Consider an elastic space with a 
defect in the plane z=o. This defect is represented by a region D such that the stress 
and displacement fields experience a discontinuity across this region. We introduce the 
following notation for jumps: 

:n,> (? Y) = n.X (5, Y, -0) - % (I, Y, +O), . . . (1.1) 
(%> (G Y) = uz (5, Y, -0) - ‘J, 65 Y, +oj 

We assume that the displacement U, has a concentrated jump at z=o of the form 

<n,> = [&I 6 (2) 6 (Y) (1.2) 

where [u=l is the magnitude of the jump and 6(z) is the delta function. 
The equations of equilibrium in displacements in the presence of mass forces have the 

form /5/ 

where {U} = II uXuynI IlT is the displacement vector, {V) = II xyz IIT is the vector of volume 
forces, u is the shear modulus and [ILlI is the 3x3 matrix of differential operators with the 
components 

Here x = '/* (1 - 2'v)/(l - Y) and v is Poisson's ratio. 
To solve system (1.3) without mass forces in the presence of a jump (1.2), we apply the 

integral Fourier transform with respect to z by the generalized scheme of /l/ with the par- 
ameter h. Partitioning the integration interval into subintervals 
integrating by parts, and conserving the jumps of all functions at 

I a%. aPUsh ---r-t * 

(i--X) a*+, aauLA 1 @Ulh -- 
x aray +r+---’ x aY* 

) 2uy), _ (1 - x) 3. au~x 
~ - = fib x ay 

(1.41 
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The symbol h is the Fourier transform parameter of the corresponding function, e.g., 

We write Hooke's law for the stresses (JZ? rc;,, r?tl in the form 

(1.5) 

We stipulate that on crossing the plane z = 0 only the displacement u, experiences a 
jump of the form (1.2), while the displacements %I, a, and the stresses cz, rz, and T,,, are 
continuous, i.e., 

(uv> = Cur> = 0, Co,) = <L> = <.c,,> = 0 (1.U) 

Now rewriting (1.5) in jumps and using (1.6), we obtain 

<f$>=<%>=o, <G>= -(I-22x)[u,]6'(1)6(y) 

Then the right-hand sides of Eqs.(1.4) take the form 

fl,. = ih Iu,l 6 (z) 6 (y), j2h = 0, f3k = --[&I 6' (X) 6 (Y) 

If the mass forces in (1.3) are taken in the form 

(1.7) 

x = -k [z&l 6 (I) 6 (y) 6' (z), Y = 0, 2 = -p luJ5 (5) 6 (y) 6 (z) 

and are Fourier-transformed with respect to a, we obtain (1.7). Therefore, the jump (1.2) 
can be obtained if two directed concentrated moments /6/ of intensity M,, = M,, = -p lu,J are 
applied at the origin. 

We can similarly treat concentrated jumps of the displacements uy and u, along z for 
z=o. For instance, the jump <uV> = [u,] 6 (.z)s(y) can be obtained if we take two con- 
centrated moments of intensity M,, = M:, = -F lu,,l. Finally, to obtain the jump <uz> = luzl 
6 (4 6 (y) , we should use three dipoles of intensity J!), = D, = -_ILX-’ (1 - 2x) [a,], D, = -px-’ [u,l. 
Now solving system (1.4) or using the available solutions (from /b/, say), we obtain expressions 
for the displacements. For brevity we will use matrix notation. We introduce the jump vector 

{S,) = I( [uxl [IL,1 lu,l IIT 

The dependence of the displacement vector on the jump vector is written in the form 

{u) =IIGII {&z) (1.8) 

where ]]G]] is a 3x3 functional matrix with elements g,,~ gij(z, y, z): 

&?,I = --zgx+, g,, = g,, = -3 (4.%-l (1 - x) zyzr-5 

g 13 = Q?, ? g12 = --zg,‘, g23 = yg*- 

g,, = --‘gz+, g,, = -ygz 1 T g,, = -zgz+ 

(g& = (4+%-Y 1% f 3 (1 - x) uV1, u = 5, y, z; r = (52 + ya + 
z2)'/*) 

(1.9) 

The stresses rzz, r,y and ur may also experience jumps across the plane z=o. We can 
similarly derive the following result. If the stresses rzc,, have a concentrated jump <z,,) = 
k,l 6 (4 6 h.4 at z=o, then the solution is identical to Kelvin's solution, with a 
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concentrated force X= [&,I applied at the origin. To obtain a solution for the concentrated 
jump <G = [r,,l 6 (5) 6 (Y) , we need to apply a concentrated force Y = Lr,,l at the origin. 
Finally, if (a,) = lo,1 6 (2) 6 (y), we need to take Z = [u,l. A dependence similar to (1.8) has 
the form 

{U} = II r II (S,), (SIJ) = II [rr,l [%,I La,1 IIT (1.10) 

Using Kelvin's solution /5, 6/, we obtain the elements of the matrix I\rll 

vrr = yX, Tlz = yzl = (8r~p)-~ sY+, v,3 = ysl = (8np)-r (1 - x) szrey (1.11) 

yzz = Y,,, Y23 = v32 = “-‘yb Yas = v: 
(vu = (8n1”)-‘r-~ [(I + x) -t (1 - x) u*r-*I, u = x, y, z) 

Applying Hooke's law and relationships (1.8) and (l.lO), we can find the stresses as a 
function of the displacement and stress jump vectors: 

1~) = II T II {&I, {al = II Q II {SoI (1.12) 

where {u) = I( u.&P~~~~~~~,, iiT. The elements of the matrices /1Tl/ and II QII have the form 
t,, = -3 (2~)~’ (1 - x) pzzrm6 (1 - 5zBrea) (1.13) 

t,, = -3 (27x)-‘pzr-” [(I + x) - 5 (1 - x) yar-21 

t,, = t,, = -3 (2~)~’ (1 - x) ~.zz~~~~ (1 - 5z*r-e) 

t,, = -3 (4~s)~~ pyzr+J [(I - 2x) - 10 (1 - x) reFZJ 

t,, = (4n)-‘pr-” [(4x - 3) i_ 3 (1 - 2x) y*r-* + 
30 (1 - x) 5*22r-41 

t,, = -3 (Zn)-‘pyzr+ [x - 5 (1 - x) ~*9r*l 
1 “32 = t,, = syt,,, t,, = t,, 

t,, = -(2n)-‘pre3 [I - 3xy*r-* - 15 (1 - x) s2z2Pl 

t,, = -(2~)-~ (1 - x) pTY (1 + 69r-* - 15Pre4) 

qs, = qa5 = qez = -3 (4s~)~’ (1 - x) ZyzP, qsl = -zg,+ 

q1s = Y&v PBP = --Y&/+, qsz = Y&-t QlS = --.zg”+, Qsz = --z&T,+ 

QlS = zg,-7 428 = w,-, 43.3 = --zgz+, 453 = --Yg*+, $38 = --z&s+ 

The coefficients t,,, tde, t,, and La3 can be obtained respectively from the coefficients 
t,,. t,,. bl and t,, by making the substitution (2 2 Y), and t,, and t,, can be obtained 
from t,, and t,, by the substitution (x;2 z). 

If the concentrated displacement and stress jumps are specified at an arbitrary point 
(5, rl), then in expressions (l-9), (1.11) and (1.13) we need to substitute z - 5 for CC and 
Y-n for y. For example, suppose that the displacement jump a% is given at the point x = 5, 
y = q. Using (l.E), we may write, for instance, a% = g,, (I - 5, y - q, z) [u,l. If the jump (u,l 
varies in some region Q with density lu,l = <u,> (z, y), then 

u, = ssg,l (I - E, Y - rl, 4 (u,> (ET 11) dQ 

Here and henceforth, integration is over the region B. 
We can proceed similarly when there is a defect of an arbitrary nature in the plane z = 0 

(for instance, a peeling rigid inclusion). In general, we observe jumps in the displacements 
US, Uyr u: and in the stresses rzc, 't*y. cr across the defect. Applying relationships (1.8), 
(1.10) and (1.12), we can write a discontinuous solution containing the given jumps (1.1); 

Here 
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where the functions gij, yij, til and qij are given by expressions (1.9), (1.11) and (1.13). 

2. Discontinuous sob%ons in cylindrical coordinates. In some three-dimensional problems 
with stress concentration near defects, we need to obtain discontinuous solutions in cylindri- 
cal coordinates. The results of Sect.1 may be extended to the case when the displacements 
and stresses experience jumps near the axes of the cylindrical system of coordinates. Consider 
jumps along the .a' axis of the local coordinate system (5'9 Y', 2') shown in Fig.1. Using the 
results of Sect.1, we can write 

{u’) = II G’ II (&,I (2.1) 

where {G') = IIww~z’II~ is the displacement vector in the coordinates (z',Y', z');{S,*} = II [u,*I fu,, J 
[u,.'] IIT is the displacement jump vector. The elements of the matrix IIG'II are given by for- 
mulas (l.ll), where 2, y, s must be replaced with I', y', z', respectively. Denote the dis- 
placements in the cylindrical system of coordinates by n,, % nz (Fig.1) and the corresponding 
jumps concentrated at the point (P? 11) by [up], h,l, lu,,l. We have the obvious equalities 

Iu,,l = lupl, Iu,,l = [uql, Iu,,l = [u:l 

or 

{S,,} = {Su) = II lu,J lu,,J [+J IIT 

Consider an arbitrary point M(x’, y’, ~‘1. The components of the displacement vector are 
Uz', Uy', n,' in coordinates (I', Y', z') and nr, ue, nr 
in cylindrical coordinates 

h 
between the displacement components in the two coordinate 

,oL ,"a systems has the form /7/ (I*' " '). The re1ationship(2.2) 

{U) = II K II {W, {VI = II ur a3 uz IIT 
I 1 - 1 I/ 

Y The elements of the matrix IlKI/ are the cosines of 
the angles between the corresponding axes: 

x’\ k,, = k,, = cos y, k,, = -k,, = -sin y, k,, = 1 
Fig.1 k,, = k,, = k,, = k,, = 0, y = 0 - 11 

Substituting (2.2) in (2.1) and using the orthogonality of the matrix11 K)(, we obtain 

(Gl = II G II b%I> II G II = II K II= G’I (2.3) 

Multiplying the matrices in (2.3), we obtain all the elements of the matrix [IGIl. Then 
expressing r', y', z' in terms of r, p, 8, n,z by the relations 

5' = r eos y - p, y' = r sin y, 2' = z 

we obtain (gfk E gik cr. Pv -f, z)) 

g,, = (4n)?c~R-~ (1 - cos y) - zgO+,-, g,, = z sin ygi,+ 

g31 = -~+&z+, 
- -- 

g,, = -z sin yg,,-, g,, = --o glz 
g,, = -(4n)-1zR-3 Ix cos y + 3 (1 - x) rpKZ sin2 VI 

g,, = --r sin yg,,+, g,, = p sin yg,,-, g,, = - zg,,+ 

(g& = (4n)-gR-3 Ix * 3 (1 -x) UvR-*1;u,u = z,i-, p, o+, 0-i 

o+ = rcosy - p, o- = p cos y - r, R = (9 + p2 - 2rp cos v)"') 

(2.4) 

We can similarly consider the stress jumps in the cylindrical coordinate system. The 
analogue of (2.3) is 

(G) = IIr II i&I (2.5) 
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where {S,) = II l~~plh~l,l[u,l I(T is the vector of stress jumps along z at the point (P> n). The 
elements of the matrix /I rII are given by 

yIl -= (8npR)-i [(I + x) cos y - (1 - x) o+o,-R-“I (2.6) 

yzl = - ypo+ sin Y, y3, = (8n~)~~(l - x) zo’R-” 

y12 = yi- sin y, yg2 = (8n)rR)-‘[(I + x) cm y -f (1 - x) rpRm2 sin? yl 

Y 32 = (8r~~)-~(l - x) zrRe3 sin y, y13 = -@nu)-'(I - X) zo-Re3 

y23 = '-iPY32, y33 = Y?:+ 
(y.>>* = (8n@-’ I(1 + x) _+r (1 - x) UVR-~I; u, u = z, i-, P, tic, o-) 

Applying Hooke's law and expressions (2.3) and (2.5), we can express the stresses in 
terms of the displacement and stress jump vectors: 

{U.) = II TII (SJ, (a) = II QII {&I (@I = II ~rwz%3%3z~z,lI~) (2.7) 

We will write out only those elements of the matrices IITII and IIQ II which are needed 
later: 

t,, = -3 (2rcm1(1 - x) ~zw+R-~ (1 - ~z?R-~). t,, = (a~+)-’ r sin yt,, (2.8) 

t,, = -_(Zn)-'(1 - x) FR-~ (1 + ~z~R-~ - 15z4R-“) 

t,, = -(4n)-1@3 sin y [(4x - 3) - 3 (1-2x) m-R-2 - 30 (l- 
x) pz%0+R-"l 

t,, = (4n)-+~R-~ [(4x - 3) cos y - 3 (1-2~) o+o-R-2 + 30 (l- 
x) rpzZRm4 sin2 yl 

t 53 = (0+)-l p sin y t,,, t,, = --o- (o+)-Lt,, 
tel = (4n)-‘~R-~ [(4x - 3) cm y + 3 (1 - 2x) rpR_2 sin2 y - 

30 (1 - X) ~~~+o-R-~l 
t,, = (4a-cet bRm3 sin y 1(4x - 3) - 3 (1-2x) po+R-2 - 30 (1 - 

x) r~%-R-~l 

q3L = o+G, qsa = xzL- sin Y, qa3 = -zg,,+ 
qsi = aa+ sin y, qs2 = -(4n)-‘~R-~ Lx CCIS y + 3 (1 - 

.x) rpR_2 sin2 yl 

465 = --Pg*z + sin y, qal = (42~~’ zRe3 L-x ccc y + 3 (1 - 
x) o+o-R-21 

qa.2 = -z&r sin y, qes = o-gzz+ 

The discontinuous solution in cylindrical coordinates may be written in the form (1.14), 
where 

{U') = II n,0Q3°~,oIlT, (U"}, = II Uz071,0tZe0 IIT 
(S,} = II <Q><%><G> IIT I&) = II <z,,><z,,><az> IIT 

and the integraloperatorsin (1.14) act by the rule 

Ggj(‘)f = SS gijfdQ, rij(*)f = SS YijfdL' 

T,,“‘f = 1s tiJdC2, Qij’*‘f = SSqijfdSr 

(2.9) 

where integration is over the region n and the functions gi,, yi,, ti,, qij depend on r, PV Y, z 
and are given by (2.4), (2.6) and (2.8). 

3. Application to the prwbkm of stress concentration near a defect. The discontinuous 
solutions (1.14) enable us to obtain a system of integral equations for the unknown jumps by 
using the conditions on the defect. We will demonstrate this technique for the problem of a 
rigid thin wedge inclusion peeling from the substrate in the plane z=o; the wedge occupies 
the region IfI I.<a,O<r<m. The stress state of the elastic space is represented as the 
sum of the basic stress state induced by an external load and the perturbed stress state 
induced by the defect. Thus, 

(U} = {u*} + {UO), (al = @*I + {a01 (3.1) 

where the asterisk identifies the main state variables. 
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Assume that the lower lip of the inclusion {a = -0) adheres to the elastic space, while 
the upper lip (z = +0) has separated. Then we have the following conditions on the defect: 

oz (r, 0, +O) = z,, (P, 0, +0) = rze (r, 0, +O) = 0 (3.2) 
4 (r, 0, -0) = u,’ - ro, sin 0 I_ smyr ue (r, 0, -0) = 

ne' - 20, t ro, eos 0, U, (r, 0, -0) = u$' - TO~C(IS e + 

ro, sin 0 

where +', ue', I&', w,, e$,, 6& are respectively the displacements and the angles of rotation of 
the inclusion as a rigid whole. 

Applying (3.1) to realize conditions (3.2) on the defect, we obtain a system of integral 
equations for the unknown jumps. We must define the kernels of the integxal operators in 
(3.1) for 2 = 10. To this end, we use the relationship 

lim 2 (8 + r2 + (3% - 2rp COS y)"'* = *2sp-'6 (r - p)6 (v) 

(2 - &O) 

and its analogues obtained by differentiation with respect to r, p, y. 
The method of 18, 9/ can be used to analyse the behaviour of jumps in the neighbourhood 

of a thin rigid wedge inclusion. Without considering the general case, we will analyse in 
detail the special case when the stresses r,, and r,e experience jumps, while the stresses 
o: and the displacements are continuous at d = 0. This corresponds to the case when the 
inclusion is without bending rigidity and adheres to the elastic space at z=,o. In this 
case, the system of integral equations has the form 

ril(o) (z,,> + ri&" <r,J = fi, i = I,2 (3.3) 

The operators rijF? are evaluated from (2.9) for z = 0; fi are functions which are not 
given here. 

To study the behaviour of the jumps <rzl> and <%e> as r--, 0, following IS, g/, we 
apply the Mellin integral transform with respect to P to the system (3.3). As a result, we 
obtain the system 

Ja IIKCa" II C#J)dq = VI 

The elements of the matrix 11 K’II have the form 

k,," (y) = -s*(lS (1 - x) - (1 + x)1 xP. (I) + (1 - x)(4 + sPs+~@)) 

klpo (y) = so Is (1 - x) - (1 + x)1 sin yP, (.z), kBlo (y) = s* 12 -!- 
5 (1 -x)1 sin yP. fx) 

ka” (19 = s* {ffl + 4 + (1 - x)(f + 41 xP, (4 + (1 - W + 
8 psi1 (41 

(s* = n/sin ns, z = - co3 y) 

Here p, (4 is the adjoint Legendre function on the cut /lo/. 
Using the relationship between Legendre functions and the hypergeometric function, we 

can show by analytical continuation of the hypergeometric function IlO/ that k12” (y) and kpxo (y) 
are continuous functions and 

k,," (Y) = -4 In (I Y Ii 4 + k,,* (Y), k,," (y) = -2 (1 + 

” N~n(lvI~a)+k,,*W 

where k,,* (y) and k,,*f$ are continuous functions. 
We will construct the solution of the system by the method of orthogonal polynomials /I/. 

To this end, we reduce the system to the iterval (--1,1) and represent the functions 
(i = 1,2) in the form 

Pis (ae) 



662 

The continuous functions Ii,,*. li,,O, 12,;. k,,* are approximated by segments of Fourier series 
in Chebyshev polynomials of the first kind, 

The ceofficients e$P' are evaluated from standard formulas /ll/, for instance 

(11) 4 
eij = ,vp (1 + ci,,)(Z -I- 6,,) 

gl 

'._I 
p=t qzi' 

k,,* [a(h,--LJ]Ti4(J.,) Tj-1 @*I 

The orthogonal polynomial method /l/ produces the following coupled system of algebraic 
equations for the coefficients X mr yrn: 

(h, = cos ['i, (2n - 1) x / Nl) 

Following /9/, we equate to zero the determinant of system (3.4) and obtain an equation 
for the exponent S. Below we give the values of S for Y = 0.3 and various a: 

an-‘. 103 125 250 375 ;O$ 5";; 750 875 
3.103 180 255 355 725 912 

To obtain s to three decimal places for a,<0.625n, it suffices to take N=6 in 
system (3.4). As a increases, the convergence becomes poorer and for a = 0.875 s we must 
take N = 9. 

Thus, the jumps (rZr) and (7,~) behave as 0 (rB-r) as r -) 0. The stresses rZT and %,e 
have the same feature. 
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